
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

Generalizing a DSL for Structured Dependency
(“Stencil-like”) Codes to OpenMP* Loops
John Pennycook and Jason Sewall, Intel HPC Ecosystem and Applications Team
DOE COE Performance Portability Meeting, April 2016, Arizona

http://www.intel.com/sites/corporate/tradmarx.htm

© 2016 Intel Corporation

A Simple Example (1/3)

2

// Two simple kernels
void flux(double prev_cell, double next_cell, double &interface);
void integrate(double prev_interface, double next_interface, double &cell);

// Typical parallel implementation (in 1D)
#pragma omp parallel for simd
for (uint32_t itf = first_itf; itf < last_itf; ++itf)
{

flux(cells[itf-1], cells[itf], interfaces[itf]);
}
#pragma omp parallel for simd
for (uint32_t c = first_cell; c < last_cell; ++c)
{

integrate(interfaces[c], interfaces[c+1], cells[c]);
}

n n+1 n+2 n+3

n n+1 n+2 n+3 n+4Interfaces:

Cells:

© 2016 Intel Corporation

A Simple Example (2/3)

3

Data-flow DAG:

3 cell values as input

2 interface values as intermediates

1 cell value as output

n n+1 n+2 n+3

n n+1 n+2 n+3 n+4Interfaces:

Cells:

© 2016 Intel Corporation

A Simple Example (3/3)

4

// Two simple kernels
void flux(double prev_cell, double next_cell, double &interface);
void integrate(double prev_interface, double next_interface, double &cell);

// Rolling update implementation (in 1D)
#pragma omp parallel for
for each tile (first_cell, last_cell)
{

double tmp_itf[2];
flux(cells[first_cell-1], cells[first_cell], tmp_itf[0]); // Prologue
for (uint32_t c = first_cell; c < last_cell; ++c) // Steady-state
{

flux(cells[c], cells[c+1], tmp_itf[1]);
integrate(tmp_itf[0], tmp_itf[1], cells[c]);
tmp_itf[0] = tmp_itf[1];

}
}

n n+1 n+2 n+3

n n+1 n+2 n+3 n+4Interfaces:

Cells:

This forward dependency prevents auto-vectorization.

© 2016 Intel Corporation

A Complicated Example – CEA’s Hydro2D

5

 Implements 9 “parallel kernels” as:

for all cells in a slab:
function();

synchronize

make_boundary();
constoprim();
equation_of_state();
slope();
trace();
qleftright();
riemann();
cmpflx();
updateConservativeVars();

© 2016 Intel Corporation

Why a DSL/Code Generator?

6

Data dependency analysis is error-prone and time-consuming.

 Needs to be repeated each time application functionality is changed.

 Application functionality may change many times during optimization studies.

 Dependency analysis for proxy applications won’t match the legacy application.

Rolling update code follows a pattern => copy-paste errors.

 Very easy to get a temporary index, or the rolling buffer size, wrong.

Rolling update loops have very real data dependencies.

 Compiler cannot vectorize the code (at all).

 Explicit vectorization requires intrinsics, SIMD classes or ugly OpenMP code.

© 2016 Intel Corporation

Input Parameters

7

 Kernel description(s):

integrate:
declaration: integrate(flux_t lf, flux_t rf, cell_t &ic);
inputs: |

lf : flux(q?[j?][i?])
rf : flux(q?[j?][i?+1])

outputs: |
ic : integrated(q?[j?][i?])

 Axiom(s):

double cell[j?][i?]

 Goal(s):

integrated(cell[j][i]) => double cell[j][i]

Kernels are elemental functions
representing production rules.
“?” can be substituted.

Axioms exist before any kernels.
Infinite extent assumed.

Inference works backward from
goals to compute specified index.

© 2016 Intel Corporation

Stage 1: Inference

8

 Start at a goal (e.g. i_cell[j][i]).

 Repeatedly apply rules and
substitutions until we reach:

‒ An axiom (e.g. d_cell[j][i]); or

‒ A node already in the DAG.

 We have prefixed function names to
ensure unique variable names.

© 2016 Intel Corporation

Stage 2: Loop Nest Optimizations

9

 Serves two purposes:

1. Identifies functions with a spatial relationship and fuses them; and

2. Aggressively fuses loop nests (where safe to do so).

 In many cases, it is safe to fuse all loops – only “concavity” prevents it:

#pragma omp parallel for simd reduction(+:sum)
for (uint32_t i = 0; i < N; ++i)
{

sum += f(input[i]);
}
#pragma omp parallel for simd
for (uint32_t i = 0; i < N; ++i)
{

output[i] = g(sum);
}

Using the reduced value requires all
iterations of the first loop to be executed.

© 2016 Intel Corporation

Stage 3: Rolling Analysis

10

 All spatial references to a variable can be
visualized as (another) “reuse” DAG.

‒ Vertices = Spatial references

‒ Edges = Child node is “reachable” from
parent node, using given loop order and
stride

 Vertices with input degree of zero are the
first time that point in the iteration space
has been visited for this variable; others
can be loaded from intermediate storage.

2D Laplace, Stride 1

2D Laplace, Stride 2

© 2016 Intel Corporation

Stage 4: Code Generation

11

 For each loop nest:

‒ Open loop nest.

‒ Generate code for children (other loop nests and/or kernel calls).

‒ Close loop nest.

 For each variable:

‒ Map from global to temporary (e.g. flux[j][i] => tmp_flux[i-istart])

 For vectorization:

‒ “#pragma omp simd” if loop has no dependencies; otherwise

‒ Strip-mine (and interchange, if necessary) with intrinsic function to rotate buffers

© 2016 Intel Corporation

Case Study: CEA’s Hydro2D

12

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

Kernels Kernels

+ SIMD

Tiles

(Domain Decomp.)

Tiles

+ Intrinsics

Tiles

+ Generated

C
e

ll
s

p
e

r
S

e
co

n
d

Implementation

Performance (Throughput) for 1024 x 1024 Grid

2 x SNB

1 x KNC (Offload)

1 x KNC (Native)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance.

http://www.intel.com/performance

© 2016 Intel Corporation

Generalizing to OpenMP*

13

 Why are we interested in language extensions?

‒ Our YAML framework is ugly and not user-friendly.

‒ User code already contains information that must be re-specified in our framework
(e.g. loop bounds, boundary conditions, program order, variable names)

‒ Adoption rate of language extensions appears much higher than that of frameworks
(e.g. OpenMP SIMD extensions vs Threading Building Blocks)

 We propose to extend OpenMP 4.5 task syntax to specify dependencies
between iterations of different loops.

© 2016 Intel Corporation

Proposed Language Extensions – Draft

14

#pragma omp pipeline \

depend(inout:cell) intermediate(flux_x) \

iterators(j:j_itf,j_cell,i:i_itf,i_cell)

{

#pragma omp pipeline block \

depend(inout:cell:*,*)

initialize_boundary_conditions(cell);

#pragma omp pipeline loop simd collapse(2) \

depend(in:cell:j,i-1) depend(in:cell:j,i) depend(out:flux_x:j,i)

for (int j_itf = jstart; j_itf < jend; ++j_itf)

{

for (int i_itf = istart; i_itf < iend+1; ++i_itf)

{

flux(cell[j_itf][i_itf-1], cell[j_itf][i_itf], flux_x[j_itf][i_itf]);

}

}

#pragma omp pipeline loop simd collapse(2) reduction(max:maxCell[j]) \

depend(in:flux_x:j,i) depend(in:flux_x:j,i+1) depend(out:cell:j,i)

for (int j_cell = jstart; j_itf < jend; ++j_itf)

{

for (int i_cell = istart; i_itf < iend; ++i_itf)

{

integrate(flux_x[j_cell][i_cell], flux_x[j_cell][i_cell+1],

cell[j_cell][i_cell]);

maxCell[j_cell] = max(maxCell[j_cell], cell[j_cell][i_cell]);

}

}

}

pipeline
A region containing one or more pipeline stages.

pipeline loop/block
Marks a loop or structured block as a pipeline stage.

intermediate(list)
Declares one or more storage locations used only to
pass data between pipeline stages.

depend(dependence-type : list : vec)
Enforce constraints on the scheduling of loop
iterations in different stages of the same pipeline
region.

New/extended keywords highlighted in red.

© 2016 Intel Corporation

Summary

15

 Produced a prototype analysis + code generation tool for “rolling updates”.

 Impressive performance results for real-life benchmark.

 Future work:

‒ Optimization heuristics (e.g. kernel fusion, redundant compute, halo size)

‒ Compiler/language integration

 If your code matches the following criteria, please e-mail us (or talk to me):

‒ Multiple parallel/vector loops over a single domain.

‒ Local, known (i.e. structured) dependencies between domain elements.

© 2016 Intel Corporation

Legal Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration
will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more
complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, Xeon, Xeon Phi and the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names
and brands may be claimed as the property of others.

© 2016 Intel Corporation.

http://www.intel.com/performance

